Pointwise Solutions

for CFD Mesh Generation


You can generate structured multi-block, unstructured, hybrid, and overset meshes for viscous simulations with precise control over point placement and clustering to get the resolution you need. At the same time, Pointwise’s core meshing methods produce cells of high quality to ensure convergence and accuracy in your CFD solution.


Steady-state Simulation of the Potsdam Propeller Using Pointwise and TCAE

Watch an on-demand webinar of TCAE being used in conjunction with a Pointwise mesh to execute a steady-state simulation of the Potsdam Propeller. Case setup as well as a full suite of results, including thrust, torque, and performance coefficient are showcased.

More

CFD and Feature Questions Answered by Pointwise Product Planning Team

Several new significant features have been added in our latest version, Pointwise V18.4. In this Q&A, our Product Planning Team will answer questions about the new features, the future of computational fluid dynamics (CFD), and the Pointwise development plan.

More

Accurate Performance Predictions for Marine Propellers

Engineers from two different companies teamed up to try to simulate a set of experiments using the Potsdam propeller. The mesh was completed using Pointwise and the simulation was done using TCFD. The results match well across a range of operating conditions.

More

Pointwise for Marine CFD Simulation Workshop

Download the presentations from the Pointwise for Marine Workshop to learn how to increase CFD simulation accuracy and efficiency with meshing flexibility. You will also see technical background information about the how and why of the meshing techniques developed and honed with many years of experience in Pointwise.

More

Pointwise and the Evolution of Faster, Easier, More Reliable Automated Meshing

Generating high-quality automated meshes for CFD analysis has been an industry goal for more than 30 years. Meshing solution developers have spent much of those years trying to create user-independent solutions, only to be stymied by the inherent complexities of geometry models, the mesh, and the CFD solution. Pointwise researchers have made tremendous strides in this area lately by building on the work of others over the last three decades. As a result, they expect to release several new features very soon that will help make automated meshing a reality. Find out more about these latest advances.

More

Recent Developments in Pointwise Applied Research

Watch a presentation given at the Pointwise User Group Meeting about user-independent automated meshing and the latest meshing technologies under development at Pointwise.

More

Hybrid Meshing Key to Improving CFD Simulation Efficiency

Read the case study, "Hybrid Meshing Key to Improving CFD Simulation Efficiency," which summarizes how a T-Rex hybrid grid showed up to a seven-fold improvement in solution efficiency compared to other approaches in predicting thrust and torque for a marine propeller.

More

Meshing the Potsdam Propeller Test Case (PPTC) in Pointwise

The Potsdam Propeller Test Case (PPTC) is a benchmark case used for assessing the accuracy of existing computer codes and modeling strategies in simulating hydrodynamic propeller performance. The controllable pitch propeller design was tested at several different conditions and has a wealth of experimental data for CFD validation.

More

The Influence of Meshing Strategies on Simulation Efficiency

Watch this on-demand webinar that will help you determine the best type of mesh to use for the fastest and most accurate CFD simulations.

More

Big Wave Surfboard Optimization Using Pointwise and CRUNCH CFD

When surfing 80-100 foot tall waves, a surfer can reach speeds as high as 50 mph. Optimization of the surfboard’s aerodynamics can contribute to stability and safety. A CFD framework featuring Pointwise’s automated meshing allowed 100 designs to be explored.

More

Big Wave Surfboard Optimization Using Pointwise and CRUNCH CFD

In this webinar, we will examine the tools and the framework that allowed over 100 surfboard designs to be explored, resulting in a higher speed, lower drag big wave surfboard design.

More

High Fidelity Overset Structured Mesh Generation for Marine Hydrokinetic Devices

Researchers at The Pennsylvania State University used the overset grid assembly tools in Pointwise to generate high-quality structured overset meshes for analysis of a horizontal axis water turbine. The flexibility offered by overset grids made it easy for them to add higher resolution grid blocks to resolve regions with high flow gradients like the turbine blade tips, wakes and tip vortices. This resulted in good agreement with experimental data even for flow details like the interaction between blade wakes and the support tower.

More

Simulation of Unsteady Propeller Blade Loads Using OpenFOAM®

Researchers at the University of Chalmers used Pointwise and OpenFOAM® to analyze unsteady propeller blade loads on ships that cause noise and vibration. Initial results are good and are being extended to include cavitation and pre-swirl stators.

More

Emirates Team New Zealand Uses Pointwise for AC72 Hydrodynamics Design

The 34th America's Cup will be contested this fall in San Francisco Bay in high-speed, high-tech, hydrofoiling catamarans hitting speeds upwards of 40 kts (more than 46 miles per hour). These new AC72 class catamarans are 72 feet long (22 m), 46 feet wide (14 m) with a wing mast towering 131 feet (40 m) above the water.

More

Structured Meshing for Low-Speed Ship Maneuvering Simulations

In this webinar, we will demonstrate how to create a structured mesh suitable for low Froude number ship resistance predictions on the U.S. Navy Surface Combatant DTMB 5415 ship hull using hyperbolic extrusion and elliptic smoothing.

More

Working with Dirty CAD While Meshing a Naval Ship Hull

Pointwise reduces the time needed for mesh completion with its flexible techniques for dealing with dirty geometry. In this 45 minute webinar, you will learn how to deal with and clean up the geometry on the U.S. Navy Surface Combatant DTMB 5415 ship hull.

More

Enlisting CFD in the Fight Against Ballast-Water Borne Organisms

The world's fleet of approximately 45,000 cargo ships transports around 8,000 million tons of cargo per year. What is, perhaps, somewhat less known is that these ships also transport some unwanted hitch-hikers in the form of organisms that get scooped up when ballast water is taken on.

More

Pointwise Used for Structured Mesh in Submarine Sail Design

Under its Corporate Enabling Research Program (CERP) initiative for future undersea warfare, the Australian Defence Science & Technology Organisation (DSTO) is investigating submarine concept designs.

More

Modeling Shipping Container Velocity during Tsunami Conditions

The risk that tsunamis pose to coastal structures is not just from the wave impact, but also from the impact of debris that is carried by the fluid flow. Shipping containers are ubiquitous in coastal locations and represent a realistic debris object.

More

Coupling CFD and Thermal Analyses with Pointwise

Engineers from W.R. Davis Limited and Pointwise, Inc. collaborated on a project to couple the ShipIR thermal analysis software with ANSYS Fluent® computational fluid dynamics (CFD) software for more accurate prediction of infrared signatures of naval vessels.

More

Search Solutions

Filter Results

Type
Industry
Technology