
Using Plugins to
Streamline Your
Process

David Garlisch

Pointwise User Group Meeting

Mar 19, 2013

Typical CFD Workflow

• Involves a suite of 3rd party and proprietary tools

• Data needs to flow from one step to the next

• Sometimes these tools don’t play nicely together

Pointwise

Solver

Post

CAD

 Non-standard standards

 Format conversion

 Byte ordering

 Data precision

 Undocumented features (bugs)

 Legacy systems

 Wasted disk space

 Wasted conversion time

Pointwise CAE Plugins

• Gain complete control over the exporting of grid
data to your downstream processes

Pointwise

Solver

Post

CAD Insert
your CAE

plugin
here

 Faster time to production
• We already have many requests

 Works seamlessly with UI

 Works seamlessly with Glyph

 Custom BCs and VCs

 Data precision

 Data format (ASCII, binary)

 Byte order

UGRID (aka AFLR3) Plugin

• Grid file well documented
– www.simcenter.msstate.edu/docs/solidmesh/ugridformat.html

– www.simcenter.msstate.edu/docs/solidmesh/ugridconnectivity.html

• BC file not documented

– Chose FUN3D’s .mapbc (http://fun3d.larc.nasa.gov/chapter-4.html)

http://www.simcenter.msstate.edu/docs/solidmesh/ugridformat.html
http://www.simcenter.msstate.edu/docs/solidmesh/ugridconnectivity.html
http://fun3d.larc.nasa.gov/chapter-4.html
http://fun3d.larc.nasa.gov/chapter-4.html
http://fun3d.larc.nasa.gov/chapter-4.html

 2D 3D

Supported Dimensions

UGRID File Information

 Filename Basename Folder

File Destination Type

 ASCII Binary Unformatted

Supported File Encodings

 Str UnsCell UnsFace

Grid Type

 TRI QUAD

 TET PYRAMID PRISM HEX

Supported Elements

Before coding the plugin, gather some solver file information

 Single Double

Supported Precisions

 BCs only Byteorder

Miscellaneous Options

UGRID File Information (continued)

Boundary Conditions

Type Id

Back pressure (static) 5051

Back pressure (Mach) 5052

Extrapolate 5026

Farfield (Riemann node) 5000

Farfield (Riemann element) 5025

Farfield (freestream) 5050

Inflow (fixed) 7100

Inflow (mass) 7036

Inflow (subsonic) 7011

Outflow (mass) 7031

Outflow (subsonic) 7012

Periodicity 6100

Symmetry Plane (X) 6661

Symmetry Plane (Y) 6662

Symmetry Plane (Z) 6663

Wall (inviscid) 3000

Wall (viscous) 4000

Volume Conditions

Type Id

Download CAE Plugin SDK

http://www.pointwise.com/plugins/

Be sure to download the version of
the SDK that is compatible with
your Pointwise installation.

Hint: When building for multiple platforms, install the CAE Plugin SDK on a network drive!

http://www.pointwise.com/plugins/

Create Empty CAE Plugin

mkplugin -uns|-str PluginName

$ mkplugin # returns full usage

Preferred PluginName Convention:

 Starts with CaeUns or CaeStr
 Ends with format name (UGRID)

Example:

$./mkplugin –uns CaeUnsUGRID
$ make CaeUnsUGRID-dr

Note:

$ tclsh # tclsh must be in path
% puts “hello world!”
% hello world!
% exit
$

CAE Plugin Runtime Header Files

To define your plugin's capabilities, you must edit the configuration
header files that were copied to your plugin’s project folder.

At runtime, this information is loaded by Pointwise. It is used by the
GUI and is accessible through Glyph scripts*.

• site.h

• rtPwpVersions.h

• rtPwpPluginInfo.h

• rtPwpInitItems.h

• rtCaepInitItems.h

• rtCaepSupportData.h

• rtCaepInstanceData.h

* See the pw::Application/CAE Solver Attributes documentation in the Glyph2 manual for more information.

http://www.pointwise.com/glyph2/files/Glyph/cxx/GlyphApplication-cxx.html
http://www.pointwise.com/glyph2/files/Glyph/cxx/GgGlyph-cxx.html

site.h
PWP_SITE_GROUPID

Globally unique, 16-bit, integer site-identifier value.

Combined with the plugin’s id value to construct a globally unique id (GUID).

If you plan on releasing a plugin outside your site, you need to obtain a

PWP_SITE_GROUPID value from Pointwise support.

Pointwise will not load plugins properly if GUID conflicts are detected.

PWP_SITE_GROUPNAME

A string representing your company or group.

All Pointwise developed plugins use the group name "Pointwise".

Pointwise uses this name to distinguish between similarly named plugins from

different authors (group ids).

A CAE plugin's full name is GroupName/CaeName (e.g. Alpha/CGNS, Alpha/xml,

Beta/CGNS, Beta/xml).

Defaults to PWP_GROUPNAME_DEFAULT.

rtPwpVersions.h

VERSION_PWP_MAJOR

VERSION_PWP_MINOR

The PWP-API major/minor version values.

Pointwise uses these values to determine plugin compatibility.

Typically, you will not change these values. They are set correctly for a
given SDK release.

VERSION_LIB_MAJOR

VERSION_LIB_MINOR

The software release major/minor version value.

Typically, you WILL change these values every time a new plugin version is
released.

The version scheme is determined by the plugin author.

Pointwise does not use these values directly.

rtPwpPluginInfo.h

• Currently, not used by the Pointwise GUI.

• You should only edit the company, support, and copyright strings.

• May be any suitable text.

VERSION_PWP_INIT, // conforms to this PWP-API version

VERSION_LIB_INIT, // software library release version

"Pointwise, Inc.", // company/author description

"support.pointwise.com", // support description (phone, web-link).

"Copyright(c) 2008-2011", // copyright description

0, // number of APIs (set at runtime)

0, // default msg callback (set at runtime)

0, // spy msg callback (set at runtime)

rtPwpInitItems.h

• Pointwise uses these values to determine the plugin type(s).

• Typically, you will not change these values. They are set
correctly for a given SDK release.

//............................

{

 {PWP_API_PLUGIN "/1.0", VERSION_PWP_INIT},

 0,

},

//............................

{

 {CAEP_API_EXPORT "/1.0", {1,0}},

},

rtCaepInitItems.h
File Destination Type

pw::Application getCAESolverAttribute FileDestination

$io initialize ?-type file_type? filename

rtCaepInitItems.h
Export Options

$io get/setAttribute BoundaryConditionsOnly att_value
pw::Application getCAESolverAttribute AllowedExportConditionsOnly

$io get/setAttribute FileFormat att_value
pw::Application getCAESolverAttribute AllowedFileFormats

$io get/setAttribute FilePrecision att_value
pw::Application getCAESolverAttribute AllowedDataPrecision

rtCaepInitItems.h
Supported Dimensions

pw::Application getCAESolverDimension

pw::Application setCAESolver name ?dimension?

pw::Application isValidDimension name dim

rtCaepInitItems.h
Supported Elements

pw::Application isValidElement name type

rtCaepSupportData.h
Boundary Conditions

pw::BoundaryCondition getNames

pw::BoundaryCondition getPhysicalTypes

pw::Application getCAESolverAttribute FileExtensions

Implement Runtime Functions

• runtimeCreate()
– Called each time the plugin is loaded into memory.
– Typically used to publish solver attributes (optional)
– Can be reloaded many times.
– Avoid time consuming operations.

• runtimeDestroy()
– Called just before plugin is unloaded from memory.
– Can be reloaded many times.

• runtimeWrite()
– Called when an export is requested

• Pointwise GUI (see user manual)
– File / Export / CAE…

• pw::CaeExporter object (see Glyph manual)
– pw::Application setCAESolver
– pw::Application begin CaeExport

UGRID runtimeCreate() Function

UGRID runtimeDestroy() Function

UGRID runtimeWrite() Function

• A simple function body is in the file
.../PluginSDK/src/plugins/CaeUnsUGRID/runtimeWrite.cxx

• When a CAE export is initiated, Pointwise will:
Populate a CAEP_RTITEM structure.

Prepare a PWGM_HGRIDMODEL database.

Populate a CAEP_WRITEINFO structure.

Call runtimeWrite(CAEP_RTITEM *pRti, PWGM_HGRIDMODEL
model, const CAEP_WRITEINFO *pWriteInfo);

• In runtimeWrite(), the plugin can access
The runtime data using the pRti param.

The grid data using the model param.

The export options using the pWriteInfo param.

• What is the Pointwise Grid Model?

UGRID runtimeWrite() Function
continued

The Pointwise Grid Model
PWGM (See appendix A)

• A filtered view of the native grid data used
internally by Pointwise.

• This view will stay consistent over time to reduce
(eliminate?) exporter rewrites.

• Handles the construction of non-native grid data
(faces).

• PWGM provides 2 topological representations
– Multi-block structured
– Multi-block unstructured

• cell centric
• face centric

• A plugin can only export as structured or
unstructured. Mixed block topology in the same
plugin is not supported.

The Pointwise Grid Model
PWGM (See appendix A)

• 2D and 3D grid data accessed using the same
functions.

• Dimensionality is only relevant when interpreting
element data.

The UGRID Export

Access the Pointwise grid model and
export it in the UGRID format.

Must understand the UGRID file
format to write the .ugrid file.

Must understand the FUN3D BC file
format to write the .mapbc file.

The .ugrid File

{ # Pnts, # Surf Trias, # Surf Quads, # Tets, # Pyrs, # Prism, # Hexs }

{ [(X1, Y1, Z1),

 (X2, Y2, Z2),
 ...

 (Xn, Yn, Zn)] }

{ [(TRIA1_P1,

 TRIA1_P2,
 TRIA1_P3),
 (TRIA2_P1,
 TRIA2_P2,
 TRIA2_P3),
 ...
 (TRIA(#Trias)_P1,
 TRIA(#Trias)_P2,
 TRIA(#Trias)_P3)]

 [(QUAD1_P1,
 QUAD1_P2,
 QUAD1_P3,
 QUAD1_P4),
 (QUAD2_P1,
 QUAD2_P2,
 QUAD2_P3,
 QUAD1_P4),
 ...
 (QUAD(#Quads)_P1,
 QUAD(#Quads)_P2,
 QUAD(#Quads)_P3),
 QUAD(#Quads)_P4]

 [Bndy1 ID,
 Bndy2 ID,
 ...
 Bndy(# Surf Trias + # Surf Quads) ID]

 [(TET1_P1,
 TET1_P2,
 TET1_P3,
 TET1_P4),
 (TET2_P1,
 TET2_P2,
 TET2_P3,
 TET1_P4),
 ...
 (TET(#Tets)_P1,
 TET(#Tets)_P2,
 TET(#Tets)_P3),
 TET(#Tets)_P4]

 ...

 [(HEX1_P1,
 HEX1_P2,
 HEX1_P3,
 HEX1_P4 HEX1_P5,
 HEX1_P6, HEX1_P7,
 HEX1_P8),
 (HEX2_P1,
 HEX2_P2,
 HEX2_P3,
 HEX1_P4,
 HEX2_P5,
 HEX2_P6,
 HEX2_P7,
 HEX2_P8),
 ...
 (HEX(#Hexes)_P1,
 HEX(#Hexes)_P2,
 HEX(#Hexes)_P3,
 HEX(#Hexes)_P4,
 HEX(#Hexes)_P5,
 HEX(#Hexes)_P6,
 HEX(#Hexes)_P7,

 HEX(#Hexes)_P8)] }

coordinate definition

tri connectivity

quad connectivity

element-patch association

tet connectivity

hex connectivity

pyr/prism connectivity

The .mapbc File
#BC

[(BC1_Id BC1_TYPE BC1_Name)

 (BC2_Id BC2_TYPE BC2_Name)

 ...

 (BC(#BC)_Id BC(#BC)_TYPE BC(#BC)_Name)]

runTimeWrite.cxx
Write Files

• UGRID block elements
must be written in a
specific, cell-type order.

– TET

– PYRAMID

– WEDGE

– HEX

• For each type, loop over
all blocks in the model.

runTimeWrite.cxx
Element Separation

• UGRID elements have the
same connectivity as
Pointwise elements except
for pyramids.

– Must reorder points for pyramids.

• UGRID uses 1-based index.
Pointwise is 0-based.

• Use writeVal() to handle the
data encoding.

runTimeWrite.cxx
Pyramid Connectivity

• UGRID supports 3
encodings in 2 precisions.

– 6 combinations!

• writeVal() automatically
writes data using the
proper encoding and
precision.

• Relies on C++ function
overloading.

• Works best when data
items written in the same
order for all encoding and
precision combinations.

runTimeWrite.cxx
Auto Encoding

Think Outside The Box

CaePrint3D plugin CaeUnsRecomb2D plugin

CaeUnsTRex2D plugin CaeUnsRecombPoly2D plugin

Additional Resources

Another Fine Mesh
http://blog.pointwise.com

A wonderful resource for all things “grid”.

CAE Plugin SDK Related Posts:

Dr. Strangegrid or: How I Learned to Stop Waiting and Write a CAE Plugin
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/

Creating a CAE Plugin – Understanding the Pointwise Grid Model API (Part 1)
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/

Creating a CAE Plugin – Understanding The Pointwise Grid Model API (Part 2)
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/

Printing Grids in 3D
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/

Appendix A – The Pointwise Grid Model

Appendix B – Building Your Plugin

http://blog.pointwise.com/
http://blog.pointwise.com/
http://blog.pointwise.com/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/02/22/dr-strangegrid-or-how-i-learned-to-stop-waiting-and-write-a-cae-plugin/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/05/23/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-1/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/06/14/creating-a-cae-plugin-understanding-the-pointwise-grid-model-api-part-2/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/
http://blog.pointwise.com/2012/03/12/printing-grids-in-3d/

Appendix A

The Pointwise Grid Model

The Pointwise Grid Model
PWGM / Structured

• Blocks have a rectilinear (i, j, k) structure.

• Internal block connectivity is explicit.

• Block to block connectivity must be defined.

• Each block has its own set of vertices.

• Each block has six faces (boundaries).
– Faces at i-min, j-min, k-min, i-max, j-max, z-max

– A face may be subdivided into rectangular subsets.
• Subset may be point-match connected with a

neighboring block.

– Transformations used to map ijk values across
block connections.

• Each block has condition data.

The Pointwise Grid Model
PWGM / Structured

The Pointwise Grid Model
PWGM / Structured

The Pointwise Grid Model
PWGM / Unstructured / Cell Centric

The Pointwise Grid Model
PWGM / Unstructured / Cell Centric

The Pointwise Grid Model
PWGM / Unstructured / Face Centric

The glue

The Pointwise Grid Model
PWGM / Unstructured / Face Centric

 Pointwise’s native grid data
does not include face
information.

 Pointwise must generate face
information when it is
requested by a plugin.

 Generating face data can be
time consuming and memory
intensive for large grids.

 Do not request face data
unless your plugin really
needs it.

 To minimize memory usage,
face information is streamed
to the plugin as it is
generated and then deleted.

The Pointwise Grid Model
PWGM / Unstructured / Face Streaming

 A plugin obtains grid model face data by calling
PwModStreamFaces() with three plugin defined callback
functions.
• beginCB(PWGM_BEGINSTREAM_DATA *data)

Called once before first face is streamed.

• faceCB(PWGM_FACESTREAM_DATA *data)
Called once for each face in the grid model.

• endCB(PWGM_ENDSTREAM_DATA *data)
Called once after the last face is streamed.

 PwModStreamFaces() does not return until streaming is
completed or aborted.

 Inside PwModStreamFaces(), Pointwise processes its
native grid data and invokes the face callbacks as
needed.

The Pointwise Grid Model
PWGM / Unstructured / Face Streaming

static PWP_UINT32 beginCB(PWGM_BEGINSTREAM_DATA *data)
{
 CAEP_RTITEM *pRti = (CAEP_RTITEM*)data->userData; // recover pointer
 // prepare to receive the face stream
 return PWP_TRUE;
}

static PWP_UINT32 faceCB(PWGM_FACESTREAM_DATA *data)
{
 CAEP_RTITEM *pRti = (CAEP_RTITEM*)data->userData; // recover pointer
 // handle the face information
 return PWP_TRUE;
}

static PWP_UINT32 endCB(PWGM_ENDSTREAM_DATA *data)
{
 CAEP_RTITEM *pRti = (CAEP_RTITEM*)data->userData; // recover pointer
 // cleanup after streaming
 return PWP_TRUE;
}

PWP_BOOL runtimeWrite(CAEP_RTITEM *pRti, PWGM_HGRIDMODEL model, const CAEP_WRITEINFO *pWriteInfo)
{
 // Must set element order BEFORE streaming faces! Since TET and PYRAMID are
 // not explicitly appended, they will enumerate last in an unspecified order.
 PwModAppendEnumElementOrder(model, PWGM_ELEMORDER_HEX);
 PwModAppendEnumElementOrder(model, PWGM_ELEMORDER_WEDGE);

 // Faces will be streamed to faceCB in an unspecified order
 const PWGM_ENUM_FACEORDER faceOrder = PWGM_FACEORDER_DONTCARE;

 // Passing pRti as the userData pointer
 PwModStreamFaces(model, faceOrder, beginCB, faceCB, endCB, pRti);

 PWGM_ELEMDATA ElemData;
 PWGM_ENUMELEMDATA EnumElemData;
 PWP_UINT32 ndx = 0;
 PWGM_HELEMENT hElem = PwModEnumElements(model, ndx);
 while (PWGM_HELEMENT_ISVALID(hElem)) {
 // get basic element connectivity information
 if (PwElemDataMod(hElem, &ElemData)) {
 // ...etc...
 }
 // get detailed element ownership and connectivity information
 if (PwElemDataModEnum(hElem, &EnumElemData)) {
 // ...etc...
 }
 hElem = PwModEnumElements(model, ++ndx);
 }
}

Appendix B

Building Your Plugin

Building Your Plugin
Microsoft Visual Studio 2008*

• Open .../PluginSDK/PluginSDK.sln.

• Add CaeUnsUGRID.vcproj if needed.
– Menu File/Add/Existing Project…
– In …/PluginSDK/src/plugins/CaeUnsUGRID/

• Set the build configuration and platform.
– Menu Build/Configuration Manager…

• Debug or Release
• x64 (64 bit) or Win32 (32-bit)

– Can also use drop lists in build toolbar.

• Build the solution
– Menu Build/Build Solution
– Builds all plugins including the sample XML plugins.

* Pointwise is compiled using Visual Studio 2008. For compatibility, plugins should also be compiled with Visual Studio 2008.

Using other compilers is untested and unsupported. See http://www.pointwise.com/pw/port.shtml for full details.

http://www.pointwise.com/pw/port.shtml

Building Your Plugin
gmake (linux / macOSX)*

• Start a command shell.

• Change the working directory to .../PluginSDK.

• Run gmake BUILD=help to see build usage information.

• Run gmake machine=M BUILD=B [target] where
– M is one of the Pointwise supported platforms

• linux 32-bit linux-based OS
• linux_x86_64 64-bit linux-based OS
• macosx mac OSX universal binary

– B is one of the build types
• Debug (the default)
• Release

– You can also set the machine and BUILD environment vars.

• Useful make targets (machine set in env)

$ gmake plugins // build all plugins (the default)
$ gmake PluginName // build only PluginName
$ gmake PluginName_clean // clean only PluginName
$ gmake clean // clean all plugins
$ gmake clobber // rm -rf {dist,src}/$(machine)
$ gmake nuke // rm -rf {dist,src}/$(machine) dist
$ gmake Target-dr // build Target for both Debug and Release
$ gmake install_validate // validates PW_RUNTIME_ROOT setting
$ gmake print.macro // prints value of gmake macro (for make file debugging)

* Pointwise is compiled using Red Hat Enterprise Linux 5 or MacOSX V10.5/6/7. For compatibility, plugins should also be compiled with the same versions. Using other versions is untested and

unsupported. See http://www.pointwise.com/pw/port.shtml for full details.

http://www.pointwise.com/pw/port.shtml

Building Your Plugin
General Information

• On all platforms, the build files are generated in the following
locations.
– .../PluginSDK/src/<machine>/<BUILD>/plugins/PluginName/

• Object files (.o, .obj).
• Deleted by the clean make target.

– .../PluginSDK/dist/<machine>/plugins/
• The release build plugins (.dll, .so, dylib).
• Deleted by the clobber and nuke make target.

– .../PluginSDK/dist/<machine>/plugins/debug/
• The Debug build plugins (.dll, .so, dylib).
• Deleted by the clobber and nuke make target.

• To facilitate the development of plugins, the SDK build system
supports two environment variables.
– PW_RUNTIME_ROOT

• Build system copies newly compiled plugins to this location.
• Must have write permissions in your Pointwise installation.

– PWI_PLUGINS_SEARCH_PATH
• Defines the location(s) from which Pointwise will load plugins at runtime.
• Do not need write permissions in your Pointwise installation.
• Possible (but unlikely) security hole.

Building Your Plugin
PW_RUNTIME_ROOT

If defined, the build system automatically copies all newly built
plugins to the Pointwise installation for testing.

The plugin is only copied if the build is successful.

Your user account must have write permissions in the plugins folder.

Set value to the folder that contains your Pointwise installation's
plugins folder.

Typical paths would be similar to
– c:/Program Files (x86)/Pointwise/win64/
– c:/Program Files/Pointwise/win32/
– /home/<username>/Pointwise/Pointwise<version>/linux/
– /home/<username>/Pointwise/Pointwise<version>/linux_x86_64/
– /home/<username>/Pointwise/Pointwise<version>/macosx/Pointwise.app/Contents/

On Windows
– Set value in Property Pages/User Macros.
– Be sure to Save property page after editing.

On linux and macOSX
– Set value in shell.
– Check the setting with make install_validate.

Building Your Plugin
PWI_PLUGINS_SEARCH_PATH

• If defined, Pointwise will load all plugins from the
path(s) specified in PWI_PLUGINS_SEARCH_PATH.

• Paths and folder ids are delimited with a comma or
semicolon.

• At startup, Pointwise searches these folders in the
specified order and loads any plugins found.

• If there are any loading conflicts, the first plugin found
will be loaded. Any subsequent, conflicting plugins will
be ignored.

Building Your Plugin
PWI_PLUGINS_SEARCH_PATH

PWI_PLUGINS_SEARCH_PATH=[{@FolderId|Folder}{,|;}]...

where,

FolderId
 One of the standard folder ids preceded by the @ char. Typically, the PrivatePlugins or

PublicPlugins folder id is used. However, any valid folder id will be accepted.

 Use @ by itself or @AppPlugins to include the plugins shipped with PW. @ is shorthand
for @AppPlugins. Invalid folder ids are silently ignored.

 To see the full list of valid folder ids run the Ctrl-0/Show Installation Info tool from
within Pointwise.

Folder
 An explicit folder path. Invalid paths are silently ignored.

Example plugin search path settings:

@PublicPlugins;@PrivatePlugins;@AppPlugins
 Load plugins from the PublicPlugins folder, followed by the PrivatePlugins folder, and finally, the AppPlugins

folder.

@PublicPlugins;@PrivatePlugins;@
 Same as previous example except for using the shorthand @AppPlugins id.

h:/path/to/plugins;@;c:/another/path/to/plugins
 Load plugins from the h:/path/to/plugins folder, followed by plugins from the AppPlugins folder, and finally,

plugins from the c:/another/path/to/plugins folder.

